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ABSTRACT ,

The considerations in selecting the sampling rate for a digital
control of aircrafts are identified and evaluated, The design method
used in this analysis is the optimzl discrete synthesis, Due teo dis-
cretization of the continuous plant this method of design does not
introduce an artificial limitation on the sampling rate. The principal
example used is the short period mode of a hypothetical high perform-

ance aircraft. The assumed model includes a bending mode and wind gusts.

Four major factors which influence the selection of the sampling
rate are identified: (a)} the time response to control inputs; (b) the
response to an external disturbance; (c) the sensitivity to variation
of parameters; (d) the roughness of the response to control inputs,
Each of these factors and its relation to the sampling rate was inves-
tigated, It was found that the limiting factors in the selection of
the sampling rate for the example are the time response to a control
input, and the response to an external disturbance, The sensitivity to
variation of parameters is larger for lower sampling rates. However, the
sensitivity can be reduced by modifying the design of the optimal linear
compensator, Different roughness functions which measure the roughness

to control inputs are suggested and demonstrated on the example,

The optimal discrete synthesis computer program, which is based on
eigenvector decomposition of the state-costate Hamiltonian matrix, is
a highly efficient program, This program calculates the optimal discrete
regulator, the steady state Kalman filter, and the mean response to

external disturbances.
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a

1.IST OF SYMBOLS

In the following list of symbols, the matrices will be
represented by capital letters, and the vectors by small
letters.

weighting matrix (states)

-1
Ay 7 A R o

(Eq. 3.32)
weighting matrix (control)

B =A, (Eq. 3.32)

control gain matrix

correlation function

D(z) or D{w), discrete compensation (Fig. II-1)
def: E 2 z'1, ch. III

linear operator {average), Ch, VII
system matrix

force on the elevator

force on the nose

input distribution matrix

input distribution matrix (control)
input distribﬁtion matrix {noise)
measurenent matrix

defined in Eq. 3.89

Hamiltonian

defined in Eq. 3.80

rate gyro and accelerometer pickup
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LIST OF SYMBOLS (Cont)

unity matrix
cost function
Kalman gains
pitch rate and acceleration gains

general parameter
slope of first order hold, Ch, III and Ch, VII

distance (elevator--center of mass)

j=1, ..., n; eigenvectors of §

moment

error covariance matrix (after measurment)

aerodynamic moment coefficients

number of zeros

number of intervals (T)

number of states; acceleration
accelerometer’s measurements

acceleratiocn (z-direction)

error covariance matrix (before measurement)
n-order characteristic polynomial

power spectral density matrix

discrete covariance matrix

pitch rate

2
g

e

q

—-xiv—



R Ch VII

T Ch III

U Ch III

w II, TII

. LIST OF SYMBOLS {Cont)}

defined in Eq. 7.14
power spectral density matrix of the measurement noise

power spectral density of the measurement noise (rate
gyro and accelerometer)

solution of the matrix Riccati equation
Laplace transform

matrix of.the eigenvectors

sampling interval

transformation

trace of matrix

time

control covariance matrix
defined in Eg. 3.32

input

velocity

measurement {white noise)

measurement white noise of the rate gyro and the
accelerometer

weighting matrix for roughness function
w-traﬂsform

vertical wind (white noise)

external disturbance (white noise) :
discrete disturbance

vertical wind gusts (correlated)

—-_XYV—



LIST OF SYMBOLS {Cont)

X covariance matrix of the states

X Ch I1X defined in Eq. 3.59 and 3.88

x state variable vector

xa, x4 bending mode states

v measurements and/or output of a system
Zw aerodynamic 1ift coefficient

z z-transform

z bending mode deflection

z! bending mode slope

3 ] transformation to z-plane

Greek Symbols

a angle of attack

T discrote input distribuiion matrix

T discrete input distribution matrix (control)
F2 discrete input distribution matrix (noise)
T ' & ZX, (see Eq. 3.57)

At suﬁdivision of T

6£ elevator angle

Ssq pilot stick input (Fig., IV-11)

b5y see Fig, IVv-11

€ interval of time

c damping ratio

c* equivalent damping
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LIST OF SYMBOLS (Cont)

T white noise
no unstable mode
B angle (Fig. VII-14)
AE,Z defined in Eg. (3.59) and (3.88)
X Lagrange undetermined multiplier
§0 stable mode as defined in Egq, 3.64
Eo defined in Eq. 3.70
g standard deviation
T time, time constant, correlation time
3 transition matrix
w angular frequency
Superscripts
k corresponds to one of the n states
T transposition of matrix
~ estimation error

mean value

hest estimate

Subscripts
a corresponds to enlarged system (Section VI-F)
b corresponding to bending modes
c corresponding to closed loop
d discrete
E unstable eigenvalues (z-plane)
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LIST OF SYMBOLS (Cont)

i sampling instant

P corresponding to plant

sSs steady state

T total

w relative to wind

z relative to stable eigenvalues (z—plane)
Abbreviations

A/D analog to digital

cps cycles per second

E-L Euler-Lagrange

F-H hypothetical aircraft

FOH first order hold

LPF low pass filter

N(O,Q) normal distribution with a zero mean and a power spectral

density matrix Q

RF roughness function

rms root mean square

RSL root square locus

SAS stability augmentation system
SP short period

SPS samples per second

TRP time response parameter

ZOH zero order hold
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I, INTRODUCTION

A PROBLEM STATEMENT

During the last ten years, the aerospace industry has shown a ten-
dency to replace the analog components of closed loop systems with digital
computers, The advantages of using a digital computer instead of a
specially built analog system are numerous, Among them are greater
accuracy, the ability to change parameters during the control operation,
and flexibility of the control logic, On the other hand, the principal
disadvantage of a digital computer in a closed loop control system is
its discrete mode of operation, The computer processes numbers generated
in real time by sampling continuous signals, The computer outputs, which
are sequences of numbers, have to be reconstructed into analog signals
(commands to actuators), Therefore, in the process of designing a digi-
tal autopilot, careful selection of the rate of sampling and the process-

ing of commands are important,

Selecting an appropriate sampling rate for an aircraft digital
controller necessitates a compromise, Cost and accuracy are factors
which argue for lowering the rate, ws . A low ws directly reduces
the cost of A/D and D/A equipment, Using less central processing unit
percentage time can either free the system for other functions, or
result in reduced central processor costs, The increased accuracy ob-
tained by slower sampling is well documented [BO-1] and can be trans-—
lated intoc additional cost savings by reducing the word size, Economic-
ally speaking, the best engineering choice is the slowest possible samp-

ling rate meeting all performance specifications,

Factors which may constitute an incentive to increase the sampling rate
are, e.g., (1} closed-loop bandwidth, or time response requirements;
(2) sensitivity to parameter variations; (3) effect of random disturb-

ances; and (4) roughness of control,
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Qur objective will be to identify and analyze the important factors
which influence the selection of a sampling rate for a closed-loop air-
craft diserete control system, After discussing the factors and their
properties, we will propose methods which will help the designer choose
a sampling rate which will not violate given criteria of performance

or given properties of the system,

As an example, we chose a hypothetical, Mach 3 aircraft [BO-1, SU-1],
flying in a highly turbulent atmosphere., This choice, which we shall
term F-H, was made because the requirements of a high-performance military

aircraft impose a limit on the minimal sampling rate,

E. PREVIQUS RELATED RESULTS

Aircraft digital control systems have now been implemented [DE-1,
MA-1], and many more have been studied [BE-1, BO-1, DsS-1, LE-1, SU-1],
The pertinent literature discusses various methods for selecting the

sampling rate,

Sampling rate selection is sometimes based on a specific multiple
of the highest important bending mode. An appropriate value for this
multiple was reported by Lee [LE-1] to be four., Others [JO-1, SI-1, ST-1]
have also selected sampling rate to be about four times the highest
important bending mode; however, it is perhaps more typical to select
sample rates at approximately six to ten times the highest bending mode

(see, for example, Refs, BO-1, DE-1, ED-1, 0S-1, SU-1], Recently,

’
Berman [BE-1] introduced the concept that the proper sampling rate is

independent of the bending modes and should be based solely on disturb-
ance effects, This was applied to a V/STOL example and yielded a samp-—
ling rate which was slower than the highest bending mode., According to
some discussions [LE-17], such a slow sampling rate violates the sampling
theorem [RA-1], which is said to state that the sampling rate must be

at least twice the highest bending mode frequency, Our interpretation

of the sampling theorem will be discussed in Chapter IV,

A completely different approach to selection of sampling rates



was taken by Mrazek [MR-1]. His selection process was dominated by the
time constants of the measuring instruments' analog prefilters, This
consideration resulted in sampling rates ofs 100 to 200 cps, However,
flying experience with digital autopilots {MA-1] shows that such high

sampling rates as suggested by Mrazek are unnecessary.

The design technique used in the analysis often influences the samp—
ling rate selection and, in some cases, causes the sampling rate to be
significantly faster than required. Although many variations exist,
we prefer to divide the design methods into two broad categories:

(1) those whose design is done in the continuous domain (or s-plane), and
(2) those whose design is done in the discrete domain (z or w-plane).
Designs of the first category are attractive since they utilize the
experience gained over many years of continuous autopilot designing.

The authors using this method [BO-1, ED-1, 0S-1, SU-1] choose one or

a combination of discrete approximation techniques (reviewed recently

by Edwards [ED-2] and Slater [SI~1]) to transform the resulting contin-
@ous compensation into a discrete compensation, The effect of the ap-

proximation in the design is typically checked by a precise simulatiomn.

Designs of the second category include the w-plane techniques
[LE-1
space techniques of Berman [BE-1], Johnson [JO-1], and the author of

ST~1], z-plane Nyquist techniques [SI-1], and the discrete state

H

this work,

The approximations inherent in category 1 (s-plane) methods introduce
an additional constraint which may be important in sampling rate selection.
It is interesting to note that all authors reporting the use of a cate—
gory 1 design method gelected a sample rate which was a higher multiple
of the bending modes of interest than those authors using a category

2 method,.

An attempt was made to relate the sampling rate to overall per—
formance for the case of optimally controlled systems, Lewis and
Athans [LEW-1], and Astrom [AS-1] developed a method which investigated
the change in the quadratic index of the continuous plant for different

sampling intervals, Their results, which are essentially experimental



(on computer), show that for larger sampling intervals, the general

tendency of the quadratic index is to increase,

1)

C. NEW RESULTS

Four major factors which influence the selection of the sampling
rate for the discrete control of a continuous system were identified

and analyzed. These factors are:
1. the time response,
2, the response to an external noise,
3, the sensitivity to variations of parameters,
4, the roughness of control,

By using an optimal discrete design, we eliminated the time lags
introduced into the control loop by the discretization of a continuous
design, Hence, the sampling rate is ne longer limited by discretization
approximations and we can concentrate on the analysis of the four factors

listed above,

1, The time response to a step input is directly related to the
length of the sampling interval, TFor a given criterion in the
time domain, the time response deteriorates for longer sampling
intervals, From simulation of the F-H short period mode, we
found that the discretized low pass filter and the discretiza-
tion of the pilot's analog input introduce a considerable delay,
This delay is as long as two sampling intervals and limits the
choice of the sampling rate, For the F-H short period example,
the lower limit of the sampling rate, imposed by the time re-

sponse, was found to be in the vicinity of 10 cps.

2, The response to external disturbances is a function of closed
loop dynamics, the disturbance correlation time, and the samp-
ling interval, It was found that for any available (discrete)
control, there is a well-defined limit to noise alleviation,

This limit is a function of the sampling rate, For higher



sampling rates, the noise alleviation by the closed 1loop system

is greater,

By analyzing the external disturbance as a Gauss-Markov
process, and by using an optimal discrete control, greater

noise alleviation for the same sampling rates can be achieved,

Sensitivity to variation of parameters was reduced by proper
modeling of the discrete compensator, The optimal discrete
compensator assumes a perfect knowledge of the system and the
noise, However, if some of the system's parameters vary from
their nominal value, the filtering and controling action of the
optimal compensator is distorted, This distortion was shown to

be worse at lower sampling rates,

In the F-H short period example, a 10 percent uncertainty in
the bending frequency causes instability of the closed loop

system, By remodeling the discrete observer, essentially by
increasing the damping of the observer's error poles corres-—
ponding to the bending mode, the closed loop system was sta-

bilized, The same could be done for larger sampling intervals,

Further restriction in sensitivity to variations of the bending
frequency can be achieved by a damping augmentation of the

bending mode,

Roughness of control is caused by the guantization of the input
signal by the zero order reconstruction hold, Intuitively, it
is obvious that for very high sampling rates, this roughness

is negligible, But for lower sampling rates, the phenomenon
cannot be ignored, This is more than a theoretical speculation,
It was also reported by Mathew [MA-1], who detected an undesir-

able jittery action on the digitally-controlled Saab actuators,

To put the concept on an analytical basis, different roughness

functions (RF) were defined. Basically, the RF is defined as a

sum (for an impulse response), or as a mean value ( for rms response)
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of the squares of the contrel discontinuities. Algorithms for
calculating the RF are given and the RF concept is demonstrated
for the F-H short period mode configuration, An interesting
result came out: 1if the quadratic cost funection is kept con—
stant, the roughness of control may decrease for larger sampling

intervals, This phenomenon is fully explained in Chapter VII,

D, THESIS OUTLINE

In Chapter II, various discrete control techniques will be surveyed,

In Chapter III, the fundamentals of a continuous system's discretiza—
tion and of the optimal discrete theory will be outlined, The author's
approach to an optimal discrete synthesis, by eigenvector decomposition,
will be given, Various numerical algorithms, useful in discrete analysis,

will be described,

In Chapter IV, the limit on the sampling rate, imposed by a time
response, will be‘investigated. An example, which illustrates the basie

concepts and is used in cther chapters, will be described,

In Chapter V, we will investigate the relation between the sampling
rate and the response to an external disturbance, A theoretical proof
of the 1limit of noise reduction as a function of the sampling rate will

be given,

In Chapter VI, the sensitivity to variations of parameters will be
described, We will investigate the behavior of a closed loop system
which includes unwanted frequencies, in our case, the bending mode, We
will show how sensitive the system is to an imperfect knowledge of un—l

wanted frequencies and what can be done to reduce this sensitivity,

An interesting relation between sensitivity and the stability of

the compensator will conclude this chapter,

In Chapter VII, a new criterion (the roughness function), will be
explained and methods for calculating the function will be given, This
new concept will he demonstrated in the design of the control loop of

the F~H short period mode example.



In Appendix A, an instruction manual and a program DISC are given,
This program, for the synthesis of an optimal regulator and an optimal
steady state observer for discrete linear systems, has various options,
The discretization procedure and the calculation of the response to an
external disturbance are included, An illustrative example is given at

the end of Appendix A,

In Appendix B, the simulation algorithm of the principal example's
behavior will be explained., This simulation, based on a specially built
computer program, simulates the behavior of a discretely controlled con-
tinuous system, An imperfect knowledge of various parameters of the
simulated system is included as an option in the program, Most of our
results regarding the time response of our principal example are de-

duced from this simulation,

E, SUMMARY OF CONTRIBUTIONS

1. The first investigation of sampling rates, considering all

effects and identifying what is important,

2. The factors which influence the selection of the sampling rate
were evaluated for an F-H example, It was shown that a proper time
response and gust alleviation were the two major factors determining the

sampling rate,

3, Demonstration of a technique that eliminates bending modes and
uncertainty of their exact frequencies as an important constraint on many
aircraft autopilot designs, All cases are easier than that of an F-H

flying at Mach 1.2 and at zero altitude,

4, A relation between the stability of the compensator and the

sensitivity was described,

5. It was found that there is a definite limit on the alleviation
of an external noise by a discrete controller, This limit is a function

of the sampling rate,

6. A new criterion, the roughness function, was defined, Methods

for calculating the function by using existing algorithms are given and

-7



demonstrated for the F-H example,

7. A new algorithm is given for calculating the Liapunov equation

using eigenvector decomposition,

8, A computer program was developed for the synthesis of an optimal
discrete regulator and an optimal discrete steady state observer based

on eigenvector decomposition,



II, SURVEY OF TECHNIQUES FOR DESIGNING DISCRETE
CONTROLLERS FOR CONTINUQUS SYSTEMS

The method of design, divided in the previous chapter into two

major categories, can be further divided into the following cate-

gories:
A, A classical continuous design and a discretization,
B, A continuous design and an optimal discretization,
C. A classical discrete design,
D, Discretization and optimal discrete design,

A, CLASSICAL CONTINUOUS DESIGN AND DISCRETIZATION

Designh on the s-plane and discretization of the compensation network
is a widely used method, Borow et al [BO-1], Edwards [ED-1], Osder ros-17],
and Sutton et al [SU-1] use this method of design., Their fundamental

approach is to duplicate the analog filters by digital filters,

Edwards [ED-2] and Slater [SL-1] investigated various methods which are
used to design digital filters having properties similar to the corresponding
analog filters, The transformations used in converting the filters from the
s—plane to the z-plane are: the standard z—transform, the bilinear
transformation, 2z-forms, and the matched z-transform, These transforma-
tions yield digital fiiters of the same order as the original analog
filter., Edward's conclusion is that the z-matched transform has proved
to.be a good technique for generating all the standard filter forms,

McGough [McG-1] analyzed this design method and suggested using the fre—
gquency response characteristics of a zero order reconstruction held to
filter out the unwanted bending freguencies, which usually consist of
the highest frequency component, We will show in Chapter VI that in

practice, sampling at the bending frequency may cause instability,
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CONTINUOUS DESIGN AND AN OPTIMAI DISCRETIZATION

B

Designing a discrete controller in the continuous domain is attrac-—
tive to any designer because tlie reguired characteristics and the closed
loop properties are usually given in the time domain (or s—plane},

Most designers have a better understanding of the physical quantities
expressed in the s-plane, Hence, several attempts were made to trans-

form the continuous design to a discrete domain in some optimal way,

Melzer and Kuo [ME-1] use Taylor's approximation for the solution of
an optimal regulator as a function of the sampling interval, Once a
sampling interwval is chosen and an optimal continuous design is done,
the feedback matrix is obtained by Taylor's series approximation. As
the authors c¢laim, this method can be verified only by numerical experi-
ments, The method was later improved by Kuo and Peterson [KU-1],
Using Taylor's expansions of the feedback matrix and the solution of the
Riccati equation, they modified the feedback gains so that the response
of the sampled—data model was as close to that of the original continuous

system as possible,

Yet the most promising approach of this kind is given by Yackel,
Kuo, and Singh [YA-1], Their method, based on Kuo's previous results, is
a complete digital redesign of continuous systems by matching states in
multiple sampling periods, Their method is essentially based on the con—
trollability theorem, which states that an n-order discrete system can be
brought to an arbitrary state in no more than n-steps, The desired
state is the solution of the continuous system during the interval n x T,
(T is the sampling interval,) The main disadvantage of their method lies
in the fact that the gains have to be changed for every sampling period,
This adds to the complexity of the numerical calculation in the real

time computer,

€. CLASSICAL DISCRETE DESIGN

This is an exact method based on z-transformation of the continuous

plant F(s). The plant F(s) is transformed to a discrete plant F(z)
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(via 2 zero order hold) on the z~-plane, see Fig, II-1, F(z) includes

the zero order hold (ZCH),

»(I—/—»- D(z) > ZOH > F{s)

FIG., II-1 DESCRIPTION OF THE DISCRETE PLANT

Methods of design on the z-plane are well documented [e.g., CA-1,
CA-2, RA-1], However, designers who are accustomed to s—plane formula-
tions prefer to transform the F(z) plant to the w-plane, The F(z)
plant is transformed to a w-plane by the bilinear transformation

z = (14w)/(1-w),

F(w) has many properties similar to the continuous plant, F(s)
[e.z., RA-1], Therefore, a compensator design can be done by classical

methods (Bode plot, root locus).

After determining a proper compensation D(w), D(w) is transformed
back to the z-plane, w = (z—-1)/(z+1), D(z) immediately gives the re—

cursive compensating equations,

Analytical expressions for 3[F(s)] are only known for very simple
transfer functions, However, computer algorithms which transform F(s)
to F(z) are available, The main disadvantage of this method is its

inagbility to design proberly multi-input, multi-output systems.

D. DISCRETIZATION AND OPTIMAL DISCRETE DESIGN -

The optimal discrete design is based on fundamental work done by
Kalman [KA-1], He pointed out the equivalence between the optimal

linear discrete regulator and the optimal linear discrete observer,
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and proposed algorithms for computing them, This is an exact method since
no discretization approximations are made. Franklin [GU-l] has shown

that the optimal discrete compensator can be designed by first design-

ing the optimal controller and then the optimal observer, We can
separate this approach into a set of two distinct problems: the trans-
formation of a continuous system into an equivalent discrete system,

and the numerical solution of the matrix Riccatl difference equation.

The discretization of the continucus system is done by a numerical
calculation of the state transition matrix and its integral, This subject,
seemingly elementary, has not been exhausted. New efficient algorithms
are discovered and rediscovered all the time, For example, Hansen [HA-1]
rediscovered ‘the algorithm devised nearly 25 years dgo by Frame [FRA-1]

and Fadeev,

Numerical methods for calculation of the discrete regulator and the
steady state filter are extensively documented [e,g,, BR-1, and Kw-11.
Those methods are based on recursive computation of the matrix Ricecati
difference equation until a steady state solution is reached. Following
Potter [PO-1], who solved the matrix Riccati differential equation by a
nonrecursive method, Vaughan [VA-1] found a nonrecursive solution for the
matrix Riccati difference equation. His method involves the calculation
of the eigenvalues and eigenvectors of the canonical state-costate equa-
tions, Using the QR transformation--a highly efficient algorithm for cal-
culating eigenvectors [FR-1], Bryson and Hall [BR-2] constructed a com-
puter program for steady-state optimal control and filter synthesis of
a continuous system, Independently of Vaughan's results, the author of
this work constructed a method and a computer program for a steady state
optimal discrete controi and filter synthesis by eigenvector decomposi-

tion,

The Vaughan solution is further explored by Howerton [HO-1], who
shows that further simplification of the discrete algebraic Riccati

equation can be achieved by transforming the system to a Luenberger

canonical form,
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III, OPTIMAL DISCRETE SYNTHESIS

There are different methods of designing a discrete compensator for
a continuous system, These methods can be divided into two basic cate-
gories as explained in Chapter I, They are: (1) those in which the
design is done in the continuous domain/s—plane; {2) those in which the

design is done in the discrete domain/z or w—plane.

The methods of the second category result in no artificial sampling
rate constraints due to discretization procedure, Therefore, these
methods are more suitable for our major objective in this work; 1i,e,,
to investigate the various factors which influence the sampling rate
selection, The author of this work preferred the discrete state approach
(instead of the w-plane approach) for the following reasons: {a) the
state space approach easily handles multi-input multi-cutput systems;

(b} the w—plane design method, essentially a classical method of design,
does not have convenient computational means for the minimization of

disturbance influences,

It will be shown in further chapters that the optimal discrete

approach, which is used in this work, is a valuable design tool,

In this chapter we will describe the procedure for synthesis of an
optimal linear regulator based on minimization of a quadratic cost func-
tion for a linear, time-~invariant discrete system, The procedure for
synthesis of a discrete optimal filter will be described by using the
Kalman analogy between an optimal regulator and an optimal steady state

filter,

The calculation of the regulator and the filter is based on eigen—

vector decomposition of the related state-costate Hamiltonian matrix,

A discretization procedure will be described for the case in which
the controlled system is continuous and the control input, generated by

a digital computer, is reconstructed by a reconstruction hold.
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Various useful numerical algorithms will be given,

A, DISCRETIZATION PROCEDURE

A-1 Reconstruction Holds

Most of the practical cases of designing a discrete controller are
those in which the controlled system is an analog plant, A special hard-
ware element, called the "reconstruction hold", is inserted between the
computer and the controlled plant, The purpose of the reconstruction
hold is to convert a sequence of numbers, usually equally spaced in time,

to a continuous sighal, See Fig, III-1,

u u u
o i Y
—>= | DIGITAL ~ 3| RECONSTRUC- |——~| ANALOG  |—
L | COMPUTER TION HOLD PLANT

Y

yiT\

FIG. III-1 DISCRETE CONTROL OF AN ANALOG PLANT,
u = control signal, uj = seguence of
numbers, T = sampling interval.

For real time in closed loop ceontrol systems, the reconstruction hold
generates signal u(t}) "(for t = nT), based on Uy for i = n,
Bagsically, the reconstruction scheme is an extrapolation, The zero order
hold (ZOM), generates a constant signal u(t) =u, for iT <t < (i+1)T,
This reconstruction hold is widely used, Higher order holds are used
primarily as examples in literature, The first order hold (FOH) is

based on the last two control vectors——ui, and u,

RT and generates a

signal varying linearly with time:
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: i i-1
u(t) = u, +-———E————- T
(3‘1)
iT = t < (i+1)T 0<71<T,

This formulation of the first order reconstruction hold originates in
sample data theory. The sample data approach usually considers a single
input control channel and sequentially processed scalar quantities,

If a state space approach and a digital computer are used, the FOH can

be reformulated, The new FOH can be defined as

e

u( t)

u, + k.t
1 1
(3.2)
iT < t < {(i+1)T 0<T<T

where u, and ki are quantities calculated simultaneously in the digital
computer., Recall that the FOH is a hardware device, which generates

the step uy and the linear rate ki of the continuous control signal
u(t), during the interval T, The vector ki {a scalar for a single
input system), can be calculated with respect to some specific criteria

and does not necessarily have to be equal to (ui-ui 1)/T,

A-2 Formulation and Algorithms For Discretization Procedure

2. The transition matrix and its first integral,

The discrete formulation of a linear continuous, differential
system is essentially the solution in the time domain from sample point

to sample point, The solution of
X = Fx + G.u (3.3)

is given by [KW-1]
(i+1)T

Xyp = ¢(T)xi + J e[(i+1)T - 116 u(r)dr (3.4)
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For a time invariant system, the matrices ¥ and G are constants;

1
therefore, (3.4) may be rewritten as
T
= +\ o(7)G. ul(T (3.5)
X1 Q(T)xi g (t) 1 (1)dT
4]
where the transition matrix &{t) is given as
- F2 2
T T
Q(T) = e = I +FT+ 2'. + ae e (3.6)

If u(g) is a constant during the interval 7T, +then the second term on

the right hand side of (3.5) is defined as Pl(T)ui, where PI(T) is

T
ro(r) 2 S ®(1)G.dT . (3.7)
1 . 1

b, Discretization of a continuous system driven by a white noise,

The disturbed system:

x = Fx + Gw [w » N(O, Q)]Jr (3.8)

may be represented at sampling points [BR~1] by:

X1 T ox; + T, vy Wy o N(oO, Qd) (3.9)

i i

where T
T ¥

q, = ®(e (1)as
[0 ]
T

r, =S ®{(1)Gdr .

o

T We will use the following notation: w -» N(0,Q), where w 1is a random
disturbance, normally distributed, with a zero mean and a power spec—

tral density matrix Q,
* The reader's attention is directed to the fact that the symbol T 1is
used for the sampling interval and also for a transposition of matrices,.
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We are interested in the covariance matrix Qd for a statistical anal-
ysis of system behavior, whereas Pw and Wy would only be needed for a

complete stochastic simulation, Therefore, (3.9) will be replaced by

xi+1 = @xi + de. wd. > N(0, @)
i i d
1 0
L =1 (3.10)
0 1
T
T T
Q. = g 8(1)G QG © (1)d7 .
d . 2
o
€. Discretization of a continuous cost function,
A continuous quadratic cost function J{(x, u, t):
t T T
J = S (x"Ax + u Bu)dr (3.11)
o .
can be transformed to a discrete version
A
N-1 T T 11 A12
= u 3.1
J 12_0 [x] u)] (3.12)
A21 A22
where N = t/T; by the following procedure, (3,11) can be rewritten as
N-1 (i+1)T . T
J = E {(x"Ax + u Bu)dr . (3.13)
i=0 E
iT

The interval 0 — t was subdivided into N intervals T, The integrals
inside the summation expression of (3,13} can be expressed as functions

of xi and ui instead of x and u, Using (3,5)

-17—



x(1) e(t)x. + T (1t)u,
i 1 i

iT = 1 < (i + 1)T

¥

therefore,
(i+1)T Alr A%
(xTAx + uTBu)dt = [xﬁug] (3.14)
iT A A u
21 22 i
where
T T
A, = g o' (1)A0 (1)d1
0
T
A = A Bld
- So [P, (1)AT) (2) + Bldt
(3.15)
T T
Al2 = S o] (T)APl(T)dT
o
T
Byg = Ay -

d. Numerical algorithms for calculating the matrices o,[ ’Qd’

All’ Alz’ A22 *

There are various methods for calculating the transition matrix
d{1r) and its first integral Pl(T). Most of them are included in
computer libraries, Efficient and simple algorithms for calculating

the matrices A however, are not found, A highly

A
Qd’ 11’ A21’ 22’

complicated method for evaluating the expressions for A and A

110 A1z 22
is described in Reference AS-1. This method requires about 250 FORTRAN
statements, We will describe a relatively simplé methed for solving
(3.15) without a numerical integration, which involves about 80 FORTRAN
statements, This solution is accomplished in two steps: first, we
transform all the A's to a simpler form; second, we subdivide the

. ) k Kk
sampling interval T into 2 subintervals AT[AT = (T)/(27)]. Then
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we show that if the various A's are known for AT [A = A(AT)], then
A(T) 1is obtained in k recursive computations, We will explain

exactly how it is done and how Kk 1is chosen,

The A's are transformed first because the integrands

in the integral expressions of these matrices are highly complicated;

e.g, the complete expression for A21 is:
T
T , T T
Ay, = [S ¢(T)Gldr] [AS ({)Gdf] + Bpdt, (3.16)
o] o ‘
Q
In order to simplify the calculation of A22 and Azl’ we will reformulate

the cost function of (3.11) by augmenting the state vector x with in-

put u, The cost function J will be

N T A O x
T T T i
J = :Z: S [xi ui] o (1) o' (1) dt (3.17)
i=0 o B u,
where &'(1) 1is defined as
o(<) r,.(7) F G
ot{1) = 1 = exp T .
0 I o 0 (3.18)
The expressions for ALl’ Alz’ and A22 are given by evaluating
T A O A A
{ o) ar(v)ar = | 0Pl (3.19)
°© °© B Ao1 Paz

By using this formulation we have transformed the problem to one of

evaluating an integral of the type
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T

Qd = S @(r)Q@(T)TdT. (3,20)
o

It is not necessary to calculate integral (3,20) by a numerical integra-

tion, As in Johnson [JOH-1], we will use the property of the trans-

ition matrix o(T).

(T + 1) = d(Md(x) = d(t)E(T) . (3,21)

k
T will be subdivided into 2 parts A&, If thﬁm) and &(LT) are
known, then Q(2&T) and $(24T) are given by

¢(2AT) = tI’(&T)tD(AT) (3.22)
2AT T
q(207) = | o(r)ae’(r)ar
7 (3.23)
AT AT
= S Q(T)QCD(T)T +S o(AT + 7)QdT (AT + t)dr
Q,(261) = @ (&T) + 8(amq (AT)eT(AT) . (3.24)

k . ;
Recall that £T =T/2", @(T) and Q_(T) are obtained by k recursive

computations of (3.22) and (3.24), which are relatively simple expressions,

In order to calculate initial values of O¢(ST) and Qd(ﬂT),
a constant is selected (say, k = 3) and the following approximations

are evaluated:

QAT), = QAT
2 2 3 (3.25)
AT T AT T AT
Qd(am)z = QAT + FQ 5= + QF —— + FQF™ —
@(AT)1 = I + FAT
3,26
ATZ (3,26)
(AT), = I+ FAT + F —
2 2
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If every term of |le - del and |¢1 - ®2| is smaller than
some predetermined number g, then Qd(ﬁT)z and @(ﬁT)z  are the initial
values, If not, k is increased by 1, Throughout our computation
{short period example), k was never larger than 4, Therefore the
sampling interval T was divided into 16 parts AT, The predeter—
mined number ¢ depends on the engineering judgment of the user who

will have the time constants of the system which interests him.

B, OPTIMAL DISCRETE REGULATOR

In the previous section we described how a continuocus system,
control via a Z0H, can be formulated as a discrete system on the
sampling points. In this section we will develop the theory of an
optimal regulator of a discrete system which minimizes a quadratic cost
function, Using the discretization procedure, the theory and results
of the discrete regulator can be applied directly to a continuous system

controlled by a digital computer.

B-1 The General Formulation of the Discrete Regulator Problem

In the last section, it was shown that a continuous system controlled
by a ZOH with an associated continuous cost function J can be reformu-

lated into a discrete form:

= +
X1 xy v T Y
N-1 A A X,
1 T T 11 12 i
J =3 E_, [xi ui] . (3.29)
1=0 A A u

21 22 i

System (3.29) can be transformed into a simpler form, The cost function

J will be rewritten as

-2]1—



1 &l T T
J = 3 2: (u1 + x A12 22) A (u + A22A21 )
i=o
(3.30)
+ XT(A - )x
i*11 12 22 21
or
1 N-1
J = 22 x&x1+1j B‘U (3.31)
i=o
where
@ = A ATl a
I B 12 22 “21
B = A22 (3.32)
Uj = uy Ay, Ay Xy,
Using the last expression of (3,32), (3,29) can be reformulated as
- @-T, At A ) Y
¢l T 1 %2 8 s T Yy
(3.33)
J:—Z ax1+‘usm

If a linear, full state feedback is defermined

i,e.,

then the control u, for system (3.29) will be

1
Aog Ay

Uy (c - i

This transformation is necessary because the th

crete regulator is solved for the system (3,33),

of the continuous system yields cost function (

R

for the system (3.33),

(3.34)

(3.335)

eory of the optimal dis—
while a discretization

3.29).



For the same reason we can transform a continuous system with an
FOH to an equivalent form of (3,33). Using our new formulation of FOH,

(3,2) yields

u
Xy T Qxi + [Tl Pk] . (3.36)
k.
1
where Pk is
T
i %S 3 (1)Grdr . (3.37)
(4]

B-2 The Solution of the Optimal Regulator

It was shown that most of the control configurations which interesti

us can be rewritten in the simple form of (3.33) repeated here:

xi+1 = @xi + 1—‘l1i
N
1 T T
= — X AX 4+ u, Bu_,
J 2 ;;L i i i i

The optimal linear controller is a control law
u, = C(i)x, (3.38)
i i

that minimizes the cost function J, for any initial conditions, If
N increases to infinity and a steady state is reached, then C(i) =

C = constant, and the controller is called a regulator,

The solution of the optimal linear controller was given by Kalman
[KA-1) who used the dynamic programming approach, We will use Bryson's
approach [BR-1] which solves the system (3,33) via the calculus of

variation,

For a finite N, the last control Uy is meaningless., It will

influence only the state x which does not interest us, Therefore

n+1’
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the cost function J obtains the form
N-1
1 T 1 T T
= = - . 3.39
J > XNAXN + 5 iéﬂ (xiAxi + uy Bui) ( )

In the minimization procedure used in the calculus of variation, we will

augment the cost function J by the constraints multiplied by a Lagrange
T

undetermined multiplier li {(vector), The constraints are the equations

of motion for (3.33)., The augmented cost function J 1is

1T T
= —— - - .40
J = XNAXN }\_NXN + iE (:ﬂl ax,) +H (3 )

where :Hi is defined as the Hamiltonian sequence:

T T (3.41)
uiBui + ki+1(¢xi + Fui).

Mi = xTAx +
i

i

pal=
b

Using the methods of the calculus of variation, the condition for

a stationary value of J is that dJ is zero for arbitrary dui:

N-1
T T al. T aH
dl = - A + —1 _ it
| (e = Ag)amy + 3 [ax. hi]dxi S My
i=1 i i
(3.42)
+ égﬂ dx + éﬁg du .
A% 0 on 0
o o
We choose Xi such that
3 "= o i =0, vu., N-1
ox i
i (3.43)
T
XAy = }\E - 0. (3.44)

For an extremum:
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égi = 0 (3.45)
du

i
yields "
; T
- B r =
3u, Bt A ° (3.46)
-1._T
= - . .47
uy BT A1 (3.47)
Combining (3,33) and (3.47), we obtain
-1 T
= - 3.48
X4l ox = TB Tyn (3.48)
and from (3,42) and (2,40), we obtain
= o' %, . + Ax (3,49)
MoS 141 i° :

Equations (3.48) and (3,49), called the "Euler-Lagrange difference

' formulated in state space notation are:

equations’
x s + 'B 9o ta -8 pTo"T
= . (3.50)
~T =T
A i1 -d TA o] M i
This is a two—point boundary value problem: x0 is given at i = 0,

From (3,43) we get the'buundary condition for i = N:
i = Ax . (3.51)

The solution to this problem was accomplished by Bryson using the
"sweep method" [BR~1], The sweep method assumes a solution for 3.
i

of the form:

Ay = B X, . (3.52)



This solution leads to a matrix Riccati difference equation in Sj:

-1

- T j =N- RN} 0
+TB ) o+a J L ’

T
s, = § (sj+1

s =4 (3.53)

Letermining S, from the backward recursive relations (3,53), and using
J
(3.57) and (3.42), the optimal control ui is expressed as a linear

combination of the state x If certain conditions are satisfied as

il
N increases, Sj reaches a steady state Sss’ and the controller is

reduced to a regulator:

-1, ~T
u, = -B 1r@ (sSS - A)xi (3.54)

which is obtained by combining (3.47), (3.49), and (3.52). In the steady
state, the matrix Riccati difference equation is reduced to a second-
order matrix algebraic equation

-1
T -1 -1.T
8 = 0 (sSS +TB T7) ¢ + A. (3.55)

ss

During the last two decades, a considerable effort has been made to find
an efficient solution of the Riccati equation and the steady state

matrix equation, The usual method of solution for (3,55) is a recursive
computation of (3.53) until 8 reaches a steady state Sss' A com-
pletely different approach to selving for SSS is to use the eigenvector

decomposition of the transition matrix (3.50).

3. Solution of S~s by Eigenvector Decomposition

In 1966, Potter [PO-1] described a method for the steady state solu-
tion of the matrix Riccati differential equation by eigenvector decomposi-
tion, Bryson and Hall [BR-2], using efficient QR algorithm for eigen~
vector calculation, constructed a computer program for linear regulators
and Kalman filter syntheses. Vaughan [VA-1] extended the Potter method

for discrete system control synthesis. The authors solved the eigenvector



decomposition problem independently of Vaughan, and also applied it to
the discrete filter synthesis problem., OQur interpretation and our proof
will be given here.

The Euler-Lagrange equation (3,50} will be repeated here, but on

the z-plane:

~1_T -T - ~
ZX 4B I d A -T'B lﬁTQ T X
zZ\ -6 Ta - A

The following theorems will be proved.

Theorem 1: If =z is an eigenvalue of the system (3,51), the 1/z is

alsc an eigenvalue,

- A -1 .. , A
Proof: (a) defining E: E =2z ; (b) defining a new variable: y = z)

and directly using (3.48) and (3.49), the system (3.56) can be

transformed to an equivalent form:

-1 T
 — Iz ~IB T X
= 0 (3.57)

T -1
A ¢ - Iz r

-1_T
TB T and A are symmetric; therefore, (3,57) may be rewritten

as

¢~ IE -TB IpT
T T
[y = ] = 0. (3.58)

T -1
A ¢ -IE

Systems (3,57) and (3,58) have the same transition matrix, There~
fore, if =z 1is the soluticn of the characteristic equation of

(3.57), then E is a solution also,

-0 7=



Conclusion: The eigenvalues of the Euler-Lagrange equations (3,536) are
reflected symmetrically across the unit circle on the z-plane, See

Fig, II1I-2,

A Im
\O\Ek 2~PLANE
N 1.0
x|
, . \
; k '
AN \
‘ N
/ \ .
- s /*1.0 " REAL
z. )
(] s i
‘-‘\:/ . zk = lzkle 6
g 7 oy i
1/{o/ I B, = |z,] e

FIG, III-2 ROOTS LOCATION OF EULER-LAGRANGE (E-L)

EQUATIONS
Definition:
Xz XE
A A
T = = T .
T [r, T, (3.59)

Matrices Tz and TE are the eigenvectors of the E-L equations,

(3.56), associated with =z and E respectively,

Before formulating and proving Theorem 2, a well-known result from

linear systems theory will be presented [e.g., KW-1],

A homogeneous, linear time-invariant discrete system
x = &x. (3.60)

isl i

with the initial conditions X has the solution
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X, = @ X . (3061)

The solution xi can be expressed in terms of the individual eigen-—
vector modes as follows: the initial condition X, is resolved along
the modes of the eigenvectors by the transformation T;

~1

E = T X (3. 62)
o r o

where Tr is the matyix of the eigenvectors of ©

T = [£

r

17 e ﬂj, crasy ﬂn]_ (3.63)

The solution xi is a linear combination of the particular excited
modes, i.e.,

n

i
x, = jzzlzj;ajgo_ (3.64)

Using this result, we can formulate Theorem 2,

Theorem 2: The steady state solution SSS at the matrix Riccati differ-

ence equation (repeated from Eq. 3.55)

1

T - -1 T.-1
S = ¢ (zS +TB IT") &+ A (3,65)

. _ -1
is 8 = AEXE . (3.66)

=3=}

Proof: The homogeneous solution of the E-L equations (3,56) is

(k) (k)

h i) X (3.67)



the order of the system,

]

where n

ok
{ = constants expressing boundary conditions
Toy
zk
{ = eigenvalues of (3.51)
I!'l~:
k k
Xz( J xE( )
and and
A (k) A (k)
z E

are the eigenvectors of (3.56) corresponding to Z) and Ek' Egua-

tion (3,67) may be formulated in a matrix notation

o o] [
n 1
X _ xz xz %olzl
A 1(4) h(n) ¢ Zi
Z A DIl n
- - = (3.68)
x(1) x(n) 0 - (N-1i}
E E ‘ol 1
+ M ’
(1) (n) ~(N-1)
K hE 3 hgon n
defining Z as
Zl 0
7 = T, . (3.69)
0 zn

Equation (3.68) can be further reduced to

N-i —

>
.
Il
=4
N
[wt
-
v
o)
+
;.
T
[N
O_—J

As 1 increases, the stable modes multiplied by the vector go
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attenuate so that equations (3,.70) beccome

N-1 —
= X_Z
*3 E T
_ (3.71)
N-i =
= 7 .
Ay o LS
-
Solving (3.71), we get
= Ax ! (3.72)
A= Mgt g .
But hi = Sixi was the assumed solution of the matrix Riccati

difference equation (3.53), Therefore {(repeat of Eq. 3.66)

-1
o 1
Sss AE E

This concludes the proof of (3,66).

Having these results, the optimal feedback control of the linear

discrete regulator is

u, = -B_lI‘tD*T(A X

1
_ - Cx. . 3,73
i B A)xi X, ( )

This solution requires nonsingularity of the transition matrix &.

Made discrete, the linear continuous system always has the property
that |®| £ 0. This stems from the fact that a continuous linear
system has a unique solution for a given initial conditions [e.g.,
KW-1]; however, this' property (I@l # 0) is not obvious for a pure
discrete system, If, in a pure discrete system & is singular, it
indicates that some of the states (or the modes) can be expressed as

a linear combination of the remaining states (or modes), Hence, if a
state variable feedback is required, the singular system representation
can be reduced in dimension until regularity is achieved and the feed-

back matrix C can be calculated,
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Two more results will be given:

a) The stable eigenvalues of the E~1 equations (3.56) are identical
with the eigenvalues of the closed loop optimal system, This useful

property ean be proven by analogy to continuous systems [e,gz., BR-2],

b) The expression for Sss’ Eq. (3.68), repeated

-«
-1
Sss = XEAE

is independent of any rearrangement of the individual eigenvectors in

*g

Ay

The proof is obvious if (3,66) is rewritten as
5 A = X . {(3.74)

Assuming SSS is fixed, then any column j of XE is a linear combina-

tion of 8 and column j of A_,
sS E

relative position with respect to other columns,

Its values are independent of its

The computer program, DISC, listed and explained in Appendix A,

is based on these results,

C, THE OPPIMAL LINEAR DISCRETE FILTER

C-1 The Measurement Timigg

The purpose of the filter is to reconstruct the states which are
not measured, and to minimize the process and measurement noise influ-
ence, For the physical system,

x
i+l

It

@xi + Piui + Pzwi w, 2 N(O, Qd)
(3.75)
vy, = Hx, + v v, = N(O,R) ,
i i i
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The optimal steady state filter is given by

x. = 0%, + ' u, (3,76)
i+l i ii
)
= K - L77
X141 X1 F RO, T ER ) (3.77)
K = PHR*
(3,78}

T

d
It

-1 T
e (M- T‘z%l"z)d)

where M is the error covariance matrix before measurements, and P

is the error covariance matrix after the measurements Yi+1 were done,

How M 1is computed will be explained later, Relation {3,77) is the
one which is used by Bryson and Ho [BR-1], and throughout this work.

Here, we assume a zero computation time between the measurements Yisl

and the output of the filter x_ Borow [B -1] shows that the delay

i+l
for the short period mode calculation is of the order of one millisecond,

The other possibility is to use the approach of Ewakernaak [Kw=1]:

N _
% = x,
i

is1 + K(yi - Hﬁi). {(3.79)

+1

These two approaches could be summesrized on the time axis in Fig,

ITI-3,

MEASUREMENT OUTPUT MEASUREMENT OUTPUT

¥t Y !
— - iT ()T ' x

FIG, III-3 MEASUREMENT AND SAMPLING INTERVAL
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In (3.77) we assume € - 0, Both of the formulations have
advantages and disadvantages. The main feature is that (3.77) is an
approximation only as '€ 1is finite, On the other hand, (3,69) uses
'obsolete' information, The compromise will be to use a third method;

for example, the cne shown in Fig, III-4.

MEASUREMENT OUTPUT
Ve,
O
N iT (i+1)T t
T
FIG. II1-4 INTERSAMPLE MEASUREMENTS

€, is the fixed time interval, longer than the maximum computation time
needed to generate the states ﬁi+1 from Yi+1 measurements, As is shown
by Kwakernaak et al [KW-1], the calculation of the optimal filter is
highly complicated., We will use the first approach which assumes that

the delay time between the measurements and the output of the filter ¥

is much smaller than the sampling, From an inspection of (3.76) and
(3.77), we can see that most of the updating of the filter can be done
before the measurements yi+1 are receiveq, Actually, the only calcula-

tion which has to be done during the delay interval is to multiply

K by Yin and to add this quantity to the rest of (3,77),

C-2 Calculation of the Steady State Optimal Filter by Eigenvector
Decomposition

The steady state optimal (Kalman) filter is an observer which mini-
mizes the steady state error covariance matrix P, The recursive equa-
tion for M obtained from the minimization process has the same struc-
ture as those for § for the optimal control problem, The equations
are identical if we consider the following equivalence first recognized

by Kalman [KA-1]:
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Contraol Filter

¢ > 3
H > rg
r, > Y
A > Q,
B < R

Thus we will replace the matrices of the optimal control problem by the

matrices of the filter in E-L equation (3.56) which yields the matrix

H:

T T -1__~1_T T
P —_
¢ + HR HD Pszz H B + 1@
-1 T
=& PZQsz o]

Making direct use of the results from the optimal regulator calculation,

the error covariance matrix M is given by

-1

M = X
' (3.81)
where XE and AE are defined from
X
x E
T = s (3.82)
A A
z E

T is a matrix of the eigenvectors of the 2n X 2n matrix X,

X
2

A

z
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are the eigenvectors of X corresponding to the stable eigenvalues of

are the eigenvectors corresponding to the eigenvalues of H located

outside the unit circle,

Similar to the optimal control problem, the stable eigenvalues of
K (inside the unit circle) are identical with the eigenvalues of the

observer error system defined from (3,76) and (3.77) as

H] g

X R -~ x (3.83)

"l

= (® — KHB)x, + (KHT, - T Jdw. + Kv_ - (3.84)
i 2 2" i i

i+l +1

D, ALGORITHM FOR AN EVALUATION OF THE STEADY STATE
RESPONSE TO AN EXTERNAL NOISE

A stable discrete system &, disturbed by an external noise with
a covariance matrix Qd reaches a steady state, The average behavior
of its states is characterized by a covariance matrix X which is the

solution of Bryson and Ho [BR-1]:
T
X = 9X¢ +Q . (3.85)
Following Bryson, the average behavior of an optimally contreclled dis-
crete system, with an external noise disturbance and measurement noise,

is characterized by the state covariance matrix X, This is the solu—

tion of

T
X~-M = (@ +IC)X-P)(T+TIC) {3.86)
where C is the optimal gain. (3.73), M and P are the observer error
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and covariance matrices defined in (3,78). Equation (3,87) will be re-

written as

X—P = &+ TC)X - P)(@® + )"

(3.87)
+ M-P.

Equation (3.87) is now in the form of (3.85), Equation (3.85) is essen—
tially a linear equation of X. New algorithms for solving (3.85)
appear frequently in the numerical method literature [e.g., BER-1], We
will present a new numerical solution of (3.85) which utilizes the al-

gorithm for eigenvector decomposition,

-1

Claim 1: X = AEXE (3.88)
where

Xz XE

AZ AE

is a matrix of eigenvectors of the 2n X 2n system of H:

) 0
H = , ' (3.89)
=T
o
Qd )
XE
g
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is the eigenvectors submatrix corresponding to the eigenvalues of H

outside the unit circle,

”,
Claim 23 If Z. is an eigenvalue of H, then z, = Ek is also an

,
eigenvalue of H.

Proofs: Claim 2 is obvious from inspection. To prove Claim 1, we

let
H = 1D (3.90)

where

e O
DE E,
D = = (3,91)
, 2 |E | > 1.
Dz (::) zn
Using (3.90) and (3.91)
-T
] )(E = XEDE
_ (3.92)
o} =
Qd XE + @AE AEDE
vields
-1 T -1
Qd + cI)AEXE ¢ = AKX . (3.93)
Define
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X = AEX,El .

(3.94)

Equation (3,93) is identical to (3.85), thus proving Claim 1,

Using this result, the average behavior

of the optimally con-

trolled discrete system, including process noise and measurement noise,

is given as the solution of (3.81), which is

-1
X = AEXE + P,
where
X X
Z E
Az AE

is a matrix of eigenvectors corresponding to 2n X 2n matrix

G + 1"c)T

T~
H

(M= PY@ + Te) T & + Tc
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E. SUMMARY

1, A linear continuous system, controlled by a discrete controller
via a zero order hold (ZOH) or a first order hold (FOH) can be formulated
as simple linear discrete systems (3.97). We have shown that if a digital
computer generates the control sequence, the information needed for the

FOH can be generated simultaneously, and not by extrapolating the last

two contrel inputs,

If 2 continuous cost function is assumed and a continuous white
noise acts on the system, the whole contrelled system can be represented

by equations of the form

Xiq = 9% FTu +Tw, Wy - N(O, Qd)
N-1 T T
Jd =
2: xiAxi + uiBui
i=o
(3.97)
vy, o= Hxg 4w, vy N(O, R) .

Converting to the formulation (3.97) enables us to calculate the optimal
'regulator and the optimal steady state observer using discrete algorithms.

2, We have developed an eigenvector decomposition computer program
for solving the discrete steady state matrix Riccati differential equa-
tion, It is highly efficient compared to recursive methods, due to the
use of the QR algorithm [FR-1], which finds eigenvalues and eigenvectors

of a matrix with widely dispersed eigenvalues very rapidly and accurately.



Our eigenvector decomposition program calculates the optimal
regulator gains and the optimal steady state filter gains, and as a by-
product, it provides the closed loop eigenvalues and the observer error

poles [App. Al.

3. Calculation of the root mean square response of the closed loop

system involves the solution of a linear matrix equation of the form

T
X = 0X0 + Q. (3.98)

A new algorithm for solving (3,98) was found, This algorithm is based
on eigenvector decomposition of a system associated with {3.98), VWe
do not claim that this algorithm is more efficient than algorithms
already in the literature, Its main advantage is that it uses the

existing program for eigenvector decomposition of a matrix,
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IV, SAMPLING TIME AND TIME RESPONSE

The time response of a controlled system is determined by its
closed loop dynamics and by the input signals, A system has a proper
time response if for a specific input, some combination of the states
follows approximately a predetermined pattern, In the case of a pilot's
commands, the input is a continuous signal, e.g., an output of a poten-
tiometer, This continuous signal has to be sampled and fed to the
digital computer which further processes it, The questions now are:
how well does the digital processor interpret the sampled signal,

and how well do the states follow the desired pattern?

The theoretical basis for the reconstruction of a continuous signal
from sampled data is given in the sampling theorem developed by Shannon [e.g.,
RA—l],, The sampling theorem states that in order to reconstruct an unknown
continuous signal from samples of that signal, one must use a sample
rate which is twice as high as the highest frequency contained in the
unknown signal, This theorem is not directly applicable to a reconstruc-—
tion of an input signal in a real time digital system, This is true for
the following reasons: (a) for causal systems, the reconstructed signal
has a phase shift with respect to the input signal, The theorem states
that it is possible to reconstruct the signal but it doesn't say that
it will be done in the same time, Actually, any reconstruction scheme
has to accumulate a minimal amount of data points in order to start the
reconstruction of the sampled signal, (b} For aircraft applications, the
proper time response is' formulated as a response to the pilot's step in-
put. However, from a theoretical point of view, a step input has an infi-
nitely large frequency spectrum, (c) In the feedback path, the sampling
theorem doesn't hold since we have knowledge of the plant, Therefore, in-
steady of applying the sampling theorem, we will investigate the time re-

sponse 0f a realistic example using a simulation scheme,

The key question of how to get a proper time response can be reform-

ulated as a problem of what the input signal should be in order to
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obtain some predetermined pattern of the states. Extensive research
dealing with this complicated problem is currently being done by Holley
and Bryson [HOL-1]., Their approach, called "a nonzero set point regulator
design'', consists of an analytical basis for the time response synthesis,
and can be extended to discrete control systems., Meanwhile, we will use
the time response specification given by Borow et al [BO—l] and Sutton

et al [SU-1], which is based on the accumulated experience of the U.S,
Navy. A complete description of this specification will be given in

Section IV-B,

The outline of this chapter is as follows, In Section IV-A we
will define the example, "F-H", which will be used in this work, It

includes the short period mode, a bending mode, and wind gusts,

In Section IV-B we will describe the various design objectives,

ineluding the time response.

In Section IV-C the inner control loop design will be described,
The classical approach will only be outlined, but the optimal discrete

design will be explained in detail.

In Section IV-D the main objectives of this chapter will be inves-—
tigated, It will be shown that, for the F-H short period example, a

proper time response imposes a definite limit on the sampling interval,

A. EXAMPLE DEFINITION

In order to be able to illustrate the various factors which influ-
eénce the sampling rate selection, our investigation into aircraft discrete
controls should be related to a definite and relevant technical system,

We chose a controlled Qhort period mode configuration of a hypothetical
type aircraft, which we term TF-H, This type of aircraft is described

by Borow [BO-1] and Sutton [SU-1] as the future aircraft of the U.S. Navy.
Our choice was made for the following reasons:

1. The time constants and the time responses in the longitud-
inal mode are short and they constrain the sampling rate,

2. The influence of bending modes on the stability and sensitivity
of the control loop must be taken into account, A considerable
effort must be made to include these effects in the control de-
sign,
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3. Only a military aircraft flies in such difficult flight condi-
tions as Mach 1.2 at ground level. The strongest wind gust
amplitudes are found at zero altitude, A high velocity flight
through such gusts generates a short correlation time of the
external disturbance, which makes the gust alleviation more
difficuit. During landing conditions (Mach 0,19), this type
of aircraft has an extremely slow time response (w = 0,5 rad/sec).
Therefore a strong bandwidth augmentation is necessary, It will
be shown that this behavior imposes serious limitations on the

sampling rate.
The geometry of this aircraft as a flexible body is described in Fig,
IV-la and Fig. IV-1b ., References BO-1, ED-1, and SU-1 use this model,

The equation of motion, based on body axes and dimensional stability

derivatives are

= (M + (Mo + (M) +
q ( q)q (M oy + (Ms)a (Mée)ﬁe
Z w Z T
. § a
QT = q + _O: aT + g + e ‘59 w W T] .
g
Uc: UoTw Uo Tv.on (4.1}
w Bt a
‘;" - . _E > w oW ,n
g T T g
W w

These are the short period mode equations; they include a vertical gust,

modeled as a first order Gauss-Markov process.

ne

1
o -y ¥ (4.2)

is defined as the total angle of attack, The reason for preferring the
state variable o instead of ¢ (as used by Borow [BO-1] and Sutton
[SU-1]) is that o is an important variable in the gust alleviation

study, The vertical acceleration is directly related to a&.

The bending mode is modeled as a second order system driven by the

elevator input and the rate of the angle of attack—rd, The bending mode
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FIG, 1IV-1a RIGID BODY CONFIGURATION,

Note: w = ¢ U,
X 0

N
-

s dz
T dx

MY

FIG, IV-1b BENDING MODE DEFLECTION



ig slightly damped (gb= 0,01), The bending equations are

X = w X
3 b 4 (4.3)

e
[t}

- - k.7 + Z 3.
4 wbx3 2gbwbx4 + wk, 5656 kzwb Qg

The actual acceleration and rotation of any point on the body axis x due

1
to bending, is
t
z
_ A
9 T G *a
b
= (4.4)
Eo= -t x
Y
b b 4

where kl' kz, are quantities depending on the airplane shape and mass
distribution, and El(x) is the first mode shape, .The wind gust influ-
ences the bending mode primarily through d& (see Egs., 4.1 and 4.2),
Sutton [SU-1] and Blakelock [BL-1] disregard this influence,

An accelerometer and a rate gyro are the measuring instruments,
The measurement signals are combined from the rigid body motion, the

bending mode motion, and additive white noises:
1
"1

_ (3.5)
%y
Uo(q - &) + zaq o Xy TV

T

=2

where Ve = N(O,rq), v, = N(O,rn). For a numerical example, we chose two
difficult flight conditions of the F-H aircraft [BO-1, SU-1]:
a) Flight condition No. 1 is a flight at zero altitude and Mach
0.19, As mentioned in the beginning of this section, a con-
siderable increase in the bandwidth (acceleration feedback) is
necessary in order to improve the time response, It will be
shown later that this flight condition limits the selection of

the sampling rate,.
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b) Flight condition No, 8 is a flight at zero altitude and Mach
1,2, High velocity flight at zero altitude generates strong
wind gusts, The maximum available gust alleviation is neces-
sary for several reasons, including improved aiming and mini-

mizing the fatigue of the pilot,
The corresponding numerical data are summarized in Table IV-1,

Table IV-1
NUMERICAL DATA OF THE F-# SHORT PERIOD (SP) MODE

Condition Ko, 1 Condition No. B
Uo(ft/sec) 212,0 1340
Mq(l/sec) ‘ -0.44 -1.91
Mw(lfft sec) . -0,0017 -0,13
2 -
Mse(l/sec ) -1.23 69,1
- . -3
M.{1/1t) -0,62x10 > 0,52x19
w
Zw(l/sec) -0,57 -4,03
Zse(ft/secz) -13,2 ~399,0
3.0 0.5
Tw(sec)
Uw(ft/sec) 12,0 12,0
.01
e c,01 v}
ub(rad/sec} 25.0 25,0
0.4 0,4
Bemax(rad)
51 of accelerometer 0,07 0,07
zi of rate gyro -0_005' -0,005
4,0
Ky 4.0
. o
k, 0.08 0,06
2 (1) i 14,0 14,0
SP freq (rad/sec) 0,60 13.2
period of SP (sec) 10,5 0.476
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A-1  Open Loop Coupling Between the Bending Mode and the Rigid Body
Motion

Borow et al, Blakelock, and Sutton et al [BO-1, BL-1, SU-1] dis-
regard any direct influence of the bending mode on the rigid body motion,
However, in flight condition No., 8, the supersonic velocity in a high
density atmosphere generates a considerable restoring moment (Ma)° Conse-
quently, the short period mode oscillation is high {~ 13.6 rad/sec) and

has the same order of magnitude as the bending mode freguency (25 rad/éec).

To estimate the influence of the bending mode on the rigid body
motion, we will assume a simplified configuration which generates a moment

around the center of mass, see Fig. IV-2,

FI1G, IvV-2 MOMENT AROUND THE CENTER OF MASS AS GENERATED
BY THE BENDING MODE,

The force Fe and the corresponding moment around the center of mass are
proportional to =z!'(x)., .We may consider the rotation of the tail as an
additional angle of attack of the elevator. In supersonic alrcrafts, the
whole elevator surface is moving and thus the moment caused by Fe is
. 2 2
a t -M ! ! i
pproximately equal to ae(zexs)/(wb) where (zex3)/(mb) is the

additional angle of the elevator due to the bending rotaticn,

We will use another assumption: the sum of the moments generated
by the deflection of other parts of the body (including Fn) is equal or
lower than 50% of the moment generated by the bending rotation of the

elevator,
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By using these approximations, the additional term of the first

equation of {4.1) will be

where 0 < kb < 1.5.

The poles of the coupled system, combined from the rigid body and

the bending mode are summarized in Table 1V-2,

Table IV-2

THE OPEN LOOP POLES OF THE COUPLED SYSTEM

Rigid Body Bending Mode
kb =0 5 =-2,5 % jl3,6 s =-0,5 * j25,0
kb =1 s =-0,9t j13.,5 s =-1,9 * j24.8
kb =1,5]s =~0,3 £ jl3.4 s =-2,4 = j24,7

From Table IV-2 we see that for a detailed design, the coupling be-
tween the short period mode and the bending mode cannot be neglected,
Although the stability augmentation system stabilizes the system, the

open loop configuration is only marginally stable,

B. DESIGN OBJECTIVES

There are several different objectives required of an inner loop
longitudinal autopilot,

The most important may be summarized as follows:
(1) A proper time response to various inputs; (2) A proper dynamic be-

havior based on the pilot's experience; (3} Wind gust alleviation.



The crucial constraint on the actual design is the conditien that
for one definite flight condition, there should be only one control con-

figuration which will meet all the objectives,

For the conventional aircraft where the elevator is behind the
center of the mass, the objectives 1, 2, and 3 are conflicting; thus,

a suitable compromise will be suggested in Section IV-3,

The various design objectives will now be explained in more detail,
Objective 1: The proper time response reguirement varies for different
aircrafts., Essentially, the requirement is for a fast response, but one
which is not too sensitive and has a sufficient stability margin, The

exact formulation will be given with Objective 2,

Objective 2: A desirable dynamic behavior, expressed as a location
of the augmented short period poles, is described in Kolk [KO-1], The
shaded area in Fig, IV-3 is the location of poles which is preferred by

pilots,

o

(cps)

0.5¢

o ¥

0.5 1.0

FIG, IvV-3 SHORT PERIOD POLES LOCATION; PREFERRED
BY MOST PILOTS,
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Combining Objectives 1 and 2, we may say that a high performance
military aircraft is expected to have a fast response in order to hbe
able to execute properly different maneuvers, It must also dampen ade-—
guately for precise weapons release, An attempt to give a quantitative
formulation to these requirements was made by the Navy, as described by

Borow [BO-1] and Sutton [SU-1]} under the name TRP (time response parameter),

The TRP is defined by the quantities in Fig, IV-4 and the relation,

t

£
TRP = (—‘i) + 0,08 (A -1) + 0,05 (ty. _ ~- 0.7)
A q nz

(4,8)
+ 0.3(A - 0.3)
nz

where Aq is the pitch rate overshoot, "and Ani iz the vertical accel-
eration overshoot, The objective iz to keep TRP < 0,25, All parenthe-

sized terms, if negative, are assumed to be zerc for the TRP calculation,

1 /n
Eg_ % %ss
ss B t, N
TA
1.0
0.5 - — = —
0 . >
et ="} t(sec)
th
z
" -
d

FIG, Iv-4 THE TIME RESPONSE PARAMETER (TRP)
DESCRIPTION
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We will interpret the meaning of the different terms in the TRP
specification: TRP is zero (the 'best' response) if: (a) the overshoot
of g is not larger than 1; (b) the time to reach half final value of
the vertical acceleration is less than 0,7s; {(¢) the maximum overshoot
of the vertical acceleration is less than 0,3; (d) the undershoot (the
non-minimum phase property) is shorter than 0,2 sec; (e) the system is
well damped, Therefore, (tc)q should be as large as possible, but not

lower than (tc)q = 4(td},

Generally speaking, the TRP specification indicates that the vertical

acceleration time constant should be less than ™ 1 sec,

Objective 3, Gust alleviation is achieved by a proper control,
The cptimal controller, which minimizes a gquadratic cost function
for an impulse response, minimizes also the mean response to white noise
disturbance (Parseval Theorem [KW-I]). Further alleviation can be
achieved if the external disturbance has a finite correlation time and
if the average wind gust behavior can be predicted, In Chapter V, a
detailed description of relations between gust alleviation and the samp-

ling time will be given,

€. INNER CONTROL LOOP DESIGN

The main purpose of this section is to point out the assumptions
and the basic differences between a classical design and the modern

control approach. Only a brief description will be given,

C-1 Summary of Classical Control Design

The classical confrol design of the inner loop can be subdivided
into two basic methods: (a) A continuous design on the s-plane and
discretization; (b) A design in the z or w-plane., Both of these
methods use the transfer function approach. This classicdl design is

summarized in Fig, IV-5.
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|
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| K -4—'—-\—— REF ILTEH

l I

DIGITAL COMPUTER

Fig. IV-5 CLASSICAL DESIGN OF THE CONTROLLED SHORT
PERIOD MODE

The first method consists of three basic steps:

1. A continuous design of the inner loop based on previocus exper-
ience,

2, Discretization of the compensation, using digital filter approx-
imations;

3. Modification of the different gains and parameters, in order
to diminish the unwanted properties of the sampling (e.g.
time lags).
Step 3 can be omitted if the sampling rate is fast enough for the digital

filter approximations to cause negligible error, It often results in

ms 5 to 10 times faster than the bending modes,

Different elements, mechanized on the digital computer, are
designed on the s-plané by classical techniques. Discretization is
achieved by the Tustin Transform [BO-1, ED-1, and 0S-1] or, in rare
cases, by z-transform [SU-1]. This design, which works quite well with
analog elements, has the following disadvantages: (a) Gust alleviation
c¢an only be achieved by a trial and error computation and simulationm,
(b) The sensitivity behavior on the s-plane doesn't coincide with the
sensitivity of the discrete controller. (c) Approximations in digital

filters lead to undesired properties of the closed loop system (as

aliasing).
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The second method consists of two basic steps:
1, Transformation (discretization) to z- or w-plane,

2. Classical design of the digital compensator based on previous
experience.
The compensation network is usually designed on the w-plane [ST-1, LE-1]
because of its similarity to the s-plane (c.f., Chapter II). This is
an exact design and therefore the problem of digital approximations is

eliminated,

The main disadvantage of the classical approach is its inability
to handle multi-input, multi-output design problems. Even Lee [LE—l],
who is currently developing a w-plane automatic synthesis program,
says, "fhe use of a classical approach is limited., Sooner or later,

we will have to start design in the state space.'

c-2 Optimal Discrete Design

An optimal discrete synthesis, based on quadratic criteria, includes
a full state-variable feedback and an optimal steady-state observer. This
is an exact design; no approximations are made as in the first

classical design, where the continuous compensatlon was made discrete,

The discrete compensator, calculated for a predetermined sampling
interval, always yields a stable system which minimizes given quadratic
criteria. However, these properties are only correct if the assumptions
about the controlled system are perfect; i.,e,, the system is linear,
there are no limitations on actuator bandwidths, the designer has a good

knowledge of the systems parameters, etc,

Furthermore, for a real system, the designer has to face a whole
new set of problems: {a) What model to use; (b) How to determine the
cost function; (c¢) How to achieve a proper time response; (d) How
to handle nearly undisturbable states; (e) How to reduce the sensitivity
to parameter variation; (f) What sampling rates to choose in order to
obtain a minimum response to external disturbances; (g) How the system
behaves for longer sampling intervals (roughness). The last three

problems will be answered in Chapters V, VI, and VII, The first four
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problems will be partially answered by outlining the optimal discrete
design of the principal example, The optimal design is based on the
Separation Theorem [GU-l] which shows that the controller and the ob-

server can be designed separately.

a. The controller design.

The main difficulty in an optimal control design is to find the
numerical value of the weighting matrix A of the quadratic criteria,
This problem is further complicated by the nonminimum phase property

of the F-H short period mode.

The necessity for a fast response conflicts with the effort
to alleviate the wind gusts, Therefore, the root square locus approach
was used [BR-4], The short period poles are relocated to an acceptable
region, while in the meantime the gust response is minimized, No weight
is given to the bending states x_ and x

3 4’
made to control the bending mode (during the first design). Similarly,

since no attempt will be

no weight will be given to wg.

The root square locus of the short period mode, based on Eq,

(4.1) is: (a) for a continuous system

A A
9 - e - - .
1+ 3 Yq( S)yq(SJ + 5 Yy SJya(S) = 0; (4.9)
(b) for a discrete system:
Aq -1 Ad 1
L+ g v (= Dy (2) + 5 v (z Dy (z) = 0 (k.10)
where
= 4
y =
q 6,
o (4,11)
Ya = % .
e

Aq and %d are the weighting terms in the main diagonal of the weighting

matrix A,

=56~



In order to obtain a better engineering insight, the root
square locus was also traced on the s-plane, Note that the trace on

the z-plane depends on the sampling interval.

The root square locus of the F-H short period mode for flight
condition No, 8 is given in Fig, IV-7. As can be seen, the minimization
of o increases the bandwidth, which is undesirable, Therefore, a com-

bination of Aq and Aa was chosen as a nominal design,

The root square locus for flight condition No, 1 is given in
Fig. IV-9. The major problem in this flight condition is the sluggish
response to the pilot's commands, Therefore, a bandwidth increase was

necessary, We will analyze the time response in morcdetail in Section

Iv-b,

The nominal pole design for flight condition No. 1 vs the

sampling interval is traced in Fig, IV-9, The damping is nearly unchanged.

b, The observer design.,

An observer design, which uses steady state optimal techniques,
is straightforward if the power spectral density matrices of the noises
are known, But the nearly undisturbable modes are a problem which needs
further clarification, A nearly undisturbable mode, in our case, is the
bending mode, which is primarily excited by the elevator's input [BL-l,
BO-1, ED-1], 1In this case, the observer error corresponding to the
bending mode is virtually undamped., Only Sutton {SU-1] assumes a slight
excitation of the bending mode by the external disturbance, Consequently,
for this particular mode, the optimal filter vields a very low gain in
the observer error equations, In order to avoid this situation, an
artificial noise will be applied to the bending mode state, This is
done only for computational purposes and it is equivalent to a pole
placement of the observer error, Another method, which relocates the
observer's error poles of the undisturbable modes and uses an optimality
criteria, is currently being developed by Breza and Bryson [BRE-1]. This

method can be extended to a discrete system,
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In this chapter we are interested in the time response to the
pilot!s commands. Those commands are fed simultaneously to the plant
and to the observer, Therefore, during the first seconds, the time re-
sponse of the plant is unaffected by the observer error poles. In

Chapter VI, where we deal with the sensitivity problem, the location

of the observer error poles will be investigated in detail.

D. THE TIME RESPONSE OF THE F-H SHORT PERIOD MODE EXAMPLE

One of the objectives of the optimal discrete controller is to mini-
mize the average pitch rate g and the average total angle of attack

o This is accomplished by determining a proper weight on the states

TO
in the quadratic cost function. But we are limited in our choice, de-
pending on: (a) the bandwidth of the actuator ( ~ 45 rad/sec); (b) the

maximum amplitude of the actuator {O.4 rad)}; ({(c) a proper time response,

The closed loop poles are far below the bandwidth of the actuator
and the restriction is the time response, We will explain in detail
how a proper time response is achieved and how the time response is

related to the closed loop poles and to the sampling interval,

The link between the pllot and the behavier of the aircraft is

described in Fig, IV-10,

- - T

] |
PILOT/ , | LOW PASS ZOH |-—a| AIRCRAFT }—
WeUY " FILTER

| |

| compEN- | | |

! 31 saTOR I

I . ™S

I I

e e e e -

FIG. 4,10 THE CONTROL CONFIGURATION OF THE SHORT PERICD MODE
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The low pass filter is necessary and serves two purposes: (a) It
is known from previous experience [BO-1, SU-1] that pilots favor a
smoothed stick input with a time constant of O.4 to 0.6 sec. (b) The
low pass filter helps to reduce the pitch rate overshoot of the controlled

configuration.

The only way to visualize the time response to the pilet input is
to simulate it, Our resulis are based on a simulation scheme described

in Appendix B,

We will now explain in detail how the pilot command is actually

pProcessed by the system. This detailed analysis is important.

The time t =0 will be defined as the instant when the pilot
‘executes the 650 stick input {a step function), The information about
this command will reach the computer within T time (T sampling inter-
val). In order to be on the safe side, we have to assume a full delay

T, =T hetween the § and the time the computer receives this com-

1 So
mand (651). Some mechanization of the first order filter on the aircraft
computer will generate one delay interval (T = T2)' See Fig., IV-11,

ube is the output of the digital low pass filter,

5
s
9]
: -7 ANALOG LOW PASS FILTER
B d u
sy 5
| S~ % DIGITAL LOW PASS FILTER
‘ ;Zsec)
T, T,

FIG., IV~11 THE INPUT TIMING

One of the delay intervals, T can be eliminated if an analog low

27
pass filter is implemented, However, in this case, we are losing the
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option of changing the time constant of the low pass filter for different
flight conditions in the digital computer, We assume that the low pass
filter [as in BO-1 and sU-1] is mechanized on the digital computer and is
a part of the discrete control system, The control configuration des-
cribed in Fig. IV-10 is closed by an additional feedback loop--the pilot,
who is sensing 6 (the pitch angle), The pilot's transfer function in-
cludes a pure delay (At = 0,3 sec), and together with the delay caused

by the digital system, this loop may be unstable, A current research

done by Stapleford [STA-1] shows that by lowering the sampling rate to

ws = 10 to 15 cps, the pilot rejects this sampling rate before instability

occurs. The reason for this rejection is the roughness of control.

The simulation results for different flight conditions and differ-

ent sampling rates are analyzed and evaluated as follows:

(a) Flight condition No, 1 (zero altitude, Mach 0,19). The be-
havior of the aircraft is plotted in Fig., IV-12. The first
plet is the response of the free (uncontrolled) aircraft to
an elevator step-input, As shown, the response is slow and
unsatisfactory (TRP = 1,0). Fig, IV-12 shows that after the
closed loop pole relocation, the response to ﬁe is fast but
with an excessive pitch overshoot (TRP = 0.27). By filtering
the pilot stick input, a good time response was cobtained

{TRP = 0.1).

The time response for lower sampling rates is plotted in Fig.
IV-13 and Fig, IV-1L4, As far as the TRP criterion is considered,
the 1imit on the sampling interval is in the vicinity of T =0.,1
(Fig. IV-13). As seen in Fig. IV-14, the slow response (TRP

> 0.25) is caused by the two delay intervals, T1 and TZ'

(b) Flight conditions No.8 (zero altitude, Mach 1.2). The free
tflight behavior of the F-H aircraft, in this flight condition,
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is characterized by a fast, short period oscillation with a low
damping, The time response of the controlled aircraft to a
filtered stick input for different sampling rates is described

in Figs, IV-15, IV-16, and IV-17.

The time response parameter is within its specifications, but
the TRP is not a suitable criterion for this discrete case.

As seen in Fig, IV-17, the time response of the pitch rate be-
tween the sampling points is essentially a free oscillation,
Therefore we may conclude that, for this flight condition too,
the acceptable limit on the sampling rate is in the vicinity

of T =0.1 sec.

E. SUMMARY :

1. To preserve acceptable time response, there is a minimum value
of the sampling rate due to the delays introduced by the sampling of the
pilot's filtered input, This minimum sampling rate depends on the required

speed of response and on the time constant of the pilot's stick filter,

2. A sampling rate selection study was made for controlling the
short period motion of the F-H airplane, The maximal sampling interval,
T, was found to be in the vicinity of T = 0.1 sec; the rigid body
short period was 10.5 sec and 0,476 sec for Flight Condition No. 1 and

No. 8 respectively, and the first bending mode period was 0,2 sec,
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V. SAMﬁLING AND ROOT MEAN SQUARE RESPONSE TO NOISE

One of the principal objectives of the aircraft autopilot is to
reduce the influence of random gusts of wind., The problem of gust allev-
iation is especially severe during high speed flights at low altitudes,
If a discrete control is used, there is a finite time interval between
corrective commands., During this time interval, the aircraft's average
random motion due to_external nolse is increasing. If the time interval
is too long, i.e., the sampling rate is too low, the rms value of some
of the aircraft states may exceed acceptable boundaries. This Places

an upper limit on the sampling interwval.

The first systematic approach to sampling rate selection as it
relates to rms response was devised by Berman [BE-1] in 1973. Berman
discusses measurements contaminated by white noise at the sampling
instant. Then he propagates the state covariance matrix of an aircraft
disturbed by white noise until one of the covariants goes beyond a pre-
determined limit. The elapsed time is the sampling interval, Using this
interval, Berman calculates the optimal (Kalman) observer, Controls are

predetermined by a pole placement.

However, the purpose of an optimal observer is not only to recon-
struct the unmeasured states. In addition, it makes a better estimate
of the states than could be obtained from noisy measurements alone,
The uncertainty of the measurement taken at the beginning of the sampling
interval is only known after the optimal observer has been determined,
But the optimal observer can be calculated only if the sampling interval
is given, For this reason, Berman's approach would yield a higher value

of the covariance than would result from using an optimal observer,

We will show a systematic way to select a maximal sampling interval

related to the rms response,

~68-



A, PRELIMINARIES

The behavior of a continuous system driven by white or colored
noise is well understood and is described in various sources [BR-1,
BR-4, KW-1], A closed loop system, with a perfect observer and a fast
confroller, may reduce the influence of an external colored noise to
any degree of acceptable rms response provided that a proper (quadratic)

criteria is assumed and that no restriction is imposed on time response,

In the case of nonminimum phase systems, or systems with a limited
amount of control available, the rms response will depend on dynamic
characterigtics of the closed loop system and on correlation times of
the colored noise, Discretely controlled continuous systems,. driven
by a continuous noise, white‘or colored, are more complicated. It
will be proven that if an unlimited control were available, there is a
well defined limit on the noise alleviation. This 1limit depends on the

sampling time,

The objectives of this section are as follows: (1) to outline
the basic relationships; (2) to demonstrate the limitation on noise

reduction due to sampling,

A-1 Basic Relationships

A continuous plant, F, driven by a colored noise w, may be

formulated as

it
X F G X G 0
1
= 3 + we |y (5.1)
W 0O F w o} G
w 2

where T - N(O, Q), white noise, and w is n, order Gauss-Markov

process for the case of a discrete control; the equations are:

= [0] +org e r,dm (5.2)
i+1 ¥
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where ﬂi -5 N(D, Qd).

As described in Chapter III, for practical reasons, we shall choose

and consequently, Qd{T) will be given as

T
e (1) = a{T)x(0)aiT)
T (5.3)
+ S o(T - T)qucgaT(T - 7)dt .
o
Assuming X{0) = 0, u; = Cx,, the rms response (or the steady state

of the Gauss-Markov sequence) is the solution of Bryson and Ho fBR-lj,
; T
X = (@+ P O)X(¢+0C) +a, (5.4)

where X is the covariance matrix of the sgtates; the square roots of
the main diagonal are the rms responses of the states. & + FIC is the
closed loop transition matrix, but not necessarily the optimal one,

In this case the state of the wind w is not fed back. Equation 5.k

assumes a perfect knowledge of the states of the plant.,

If the measurements are highly contaminated by noise, the rms
response of the system can be calculated by augmenting the plant equa-
tions, (5.1), by obserwer equations and solving for X from (5.4) for

the augmented system,

In Section V-2, we will use the optimal control and optimal filter-

ing approach which was described in detail in Chapter III,

A-2 Basic Limitation on Noise Alleviation Due to Sampling

Contrary to the continuous contrel systems, the discrete commands

" are executed at discrete intervals. During these intervals, the system
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is exposed to disturbances, The best way to reduce the noise influence
is to try to use inputs which will bring the system to zero as gquickly
as possible, But there is a limit to the noise alleviation no matter
what control we use, This will now be shown. First, some general

regults will be derived,

(a} A linear discrete system controlled by a state variable feed-
back, can be reduced to a zero state at most in n steps
{n-order of the system). A complete proof, using the Caley-

Hamilton theorem, is given in Kwakernaak [KW-1].

If 3 is the closed loop transition matrix, and

X, = & x, {5.5)

then the results are that (1) ¢c is a nilpotent matrix

(Q: =0), and {2) all eigenvalues of ¢ are located at
the origin., In classical control literature, this system is

named a2 "deadbeat" system, or a "finite settling" time design.

{p) Claim: Given a continuous system with zeros at the origin;
controlled by an optimal discrete controller, then if all
Ai/B ~» & {unlimited amount of control available), the system
is equivalent to a deadbeat system; where Ai is the weight

on the state x B is the weight on the control, assuming

i:
a single input system.

Proof: Using root sgilare locus, the system (5-5) can be
formulated as [KW-1]

B + y(z-l)TAy(z) = 0 (5.6)

where y(z) is the vector of the transfer functions, x(z) =
v(z)u(z), (u scalar); and A is the weighting matrix of
the states ih the quadratic criteria, The transfer functions

YJ(Z), where xj(z) = yj(z) u(z) have the following structure
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(5.7)

where zmj are the zeros corresponding to the state j,

and Pn(z) is the n-order characteristic polynomial of the
open loop system. For physical systems, mj = n, Using

{5.?), Eq. (5.6) can be formulated as

n mj

2B+ F—y Aj’ = 0 (5.8)
3 p(z) " P(2)

_mJ-

m
or, by multiplying the numerators and denominators by =z J

and rearranging

55 [BPn(zmj*l)Pn(z) + Ajzmj] = 0

J

as A./B - ®, the poles of (5.7), which are the poles of the
i

closed loop system, approach the zeros of the open loop system

(located'at the origin), and therefore become a deadbeat sys-

tem,
Using these results, we can formulate the following theorem,

Theorem: For a discretely controlled continuocus system, the rms response

to white noise, for any control, is equal to or greater than:

T
n-1 n-1 T
X = & Q& .02 Q. (5.10)

If all the closed loop zeros are located at the origin, the equal-
ity holds.

Proof: The closed loop system, (5.5), driven by white noise, is
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Xiq = o x; + Tw, . (5.11)

From {5.11)} we obtain

n n-1
= a s + 1j L
X4 en ¢ x, + 9 Tw, + Wy (5.12)
but @2 =0, Multiplying (5.12) by x1+n and averaging yields
T A n-1 n-lT
x = == "~ . ]
E(x,%]) X Q0 toaee T Q (5.13)
i>n

Equation {5.13) gives the lower limit on X, Note: (1) ¢, = ¢C(T);
(2) x = x(T,Q); (3) If not all the closed loop zeros are located
at the origin, or Af/B is limited, then o" # 0, in this case,

@nx_xT@nT > 0 and the rms response to white noise is greater than

(5.13).

Example: A first order system, driven by a continuocus white noise and

controlled by a discrete controller, e.g., the following system

X = ax + gu -+ w w > N(O, q)
- &M - N(O 14
X0 = € Xy + Tui oW, Wy Dy qd) (5.14)
T ar aT 4 2aT
q. = S e ‘ge dr = (e -1)
d A 2a

Closing the loop of {5.14) by Yu = bx. ylelds

T

2
= (e*+ b)xi +w al

aq
xi+1 wi-a N[OJ _2_3. (e - 1)}‘ (5015)

i

The rms response of the closed loop system to white noise is the

steady state solution of the Gauss=Markov sequence (5.13).
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Definition: oii = Qe The steady state value of x5 is given

by the solution of (5.4)

%E CEZaT _ 1)
q = - (5.16)
s 1 - aT b)2

Note: for T =0 (continuous control), q o/-2(a+b), a + b

S8
< 0. Some properties of (5.16) are: (a) for b =0 or T - w,
QXi i -q/ha which 18 the open loop steady state covariance of x.

(b) for a given T, the deadbeat b is

eaT-!-b = 0—=>lbh = =~ eaT

or

q = -%E(l—e . (5-17}

Xy
min

Equation (5.17) shows that even for any control available, g,
min
is always finite, and zero response to external noise can be

achieved by limiting T -+ 0 only, T- 0 = QXi =0,

This analysis is strictly valid on sampling points only., If
the open loop is stable and the output of the controller is a deadbeat

system, then this analysis could be extended to intersample points also.

B. DETERMINATION OF THE MAXIMUM ALLOWABLE SAMPLING INTERVAL

We will analyze in detall the influence of various factors which
determine the rms response of a discretely controlled continuous system,
Using the expression for rms response calculation derived in Chapter III,

we will consider the influence of
1, Different correlation times of external disturbance;
2, Optimal control vs pole placement:

3. Varying accuracy of measuring instrument.
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A clearer understanding of these factors will help us to select the
proper sampling rate.

aircraft example, flying in the most gusty envirounment.

After detailed analysls in Sections V-B-1,

V-B-2,

Qur calculation will be carried out for the F-H

and V-B-3, we

will summarize the method of selection of the sampling rate in Section

V-B-14,

B-1 Relation Between Correlation Time of The Colored Noise Disturb-

ance and the Sampling Time

For the rms calculations we will use

short period dynamics:

Kol

£

g

The wind gusts are modeled as a colored noise disturbance.

M
oM
= 1 Z(XT
0 o
. z
Mg + My
e
+
Zg /U
e
0
-

M M. Zor
i =t

a gsimplified medel of the

5

£

[

ﬁl ]
Y

]

£

m,

N - N(o, 1},

(5.18)

"Colored"

means that the power at the wind gusts is not equally distributed over

all frequencies,

process is used for the stochastic wind gust model,

tion time

Tw determines the spectrum of the wind gust.

It,

as in our case,

a first order Gauss-Markov

then the correla-

More power is

concentrated in the lower frequencies than in the higher frequencies,

The rms value of the wind is related to the integral of the power

spectrum and is designated by o ,

The mathematical process which
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generates this colored noise is based on a first order filter, with the
time constant T, which filters a white noise with a power spectral

densgity 202/%w.

Modeling the disturbance as a colored noise instead of as a white

noise has three advantages:

(a) It is a more realistic model from an engineering point of
view;
(b) The white noise has a weak mathematical definition [KW-1];

moreover, its total power is infinitely great.

(¢) In the short period example, one of the measurements is the
acceleration. The acceleration is related to aT which is
combined from the angle-of-attack and wind gusts. If a white
noise is used as a model of the wind disturbance, then the
measurements are contaminated, not only by the measurement
noise, but also by the process noise, This makes the calcu-

lation of the optimal observer much more difficult [BR-1].

The colored noise can be characterized by its spectral distribution, or
by its correlation function., The correlation function CW(T') indicates
how the disturbance at time t relates to a disturbance at time

t + 1% The various relationships can be visualized in Figs. V-1 and V-2,

ey

FIG, V-1 THE SPECTRUM OF lwgl .
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FIG, v-2 THE CORRELATION FUNCTION OF wg .

To calculate the rms response to a vertical gust, we will compare
the influence of different sampling rates and different correlation
times, The most meaningful comparison can be made if the gusts have the
same intensity, i.e., 62 = constant, In this case, 02, which is the
variance of the wind gust, is related to the intensity of the wind. The

energy distribution is schematically described in Fig., V-3 {1og scale) .,

FIG, V-3 ENERGY DISTRIBUTION OF WIND WITH THE SAME
INTENSITY AND DIFFERENT CORRELATION TIMES,
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The area under each curve is related to the total kinetic energy of the

wind and is constant.

Using the methods from Chapter III, the rms response of ¢ and QT
were calculated for different sampling times and different correlation

times,

The numerical example we are investigating in this Chapter is the
flight condition No, 8. of the ?-H aircraft described by Borow [BO-1] and
Sutton [SU-1]. This is a flight in zero altitude and at Mach 1.2, It
is usually assumed [cf ET-1] that the wind disturbance is "frozen"
in space and the velocity of flight determines the correlation time Tw'
Furthermore, T depends on various other factors such as the terrain
over which the aircraft is flown (zero altitude). Borow and Sutton
each give the average values of ¢ and Ty @8s g =12 ft/sec and
Tw = 0.5 sec. During our investigation, we will vary T only. The
total rms response is directly related to o and therefore it will not
be necessary to analyze the influence of various o's on a& and q.

The rms response depends also on the weighting matrices in the quadratic
cost function, In Chapter IV we described how the weights on the states
are chosen, It was shown that the selection of the weights represents

a compromise among such factors as rms response, time response to a
pilot input, bandwidth of the actuators, and of the closed loop system.
Taking into account these considerations, the selected weights and the

corresponding closed loop roots are summarized in Table V-1:

Table V-1
LOCATION OF THE CLOSED LOOP ROOTS, FLIGHT CONDITION No, 8

Closed Sampling
Loop Roots Time T = 0,005 sec T = 0,05 sec T = 0,1 sec

z—plane 0,929%30, 045 0,41 + j0,22 | 0,065%j0,15

s—plane -14.5%j9.6 -16 * 12,0 =-17+j12.5

Open Loop Roots:; s = -2,5 * 13,5

-1
Weights: Aq/B = 0,12 (sec ), A = 11,0 [o].

/B

—78—



The results of the rms response calculations are plotted in Figs,
v-4% and V-5 as a function of various sampling times 